Synthesis and structure-activity studies of novel anhydrohexitol-based Leucyl-tRNA synthetase inhibitors.
De Ruysscher, D., Pang, L., Lenders, S.M.G., Cappoen, D., Cos, P., Rozenski, J., Strelkov, S.V., Weeks, S.D., Van Aerschot, A.(2021) Eur J Med Chem 211: 113021-113021
- PubMed: 33248851 
- DOI: https://doi.org/10.1016/j.ejmech.2020.113021
- Primary Citation of Related Structures:  
6YKK, 6YKL, 6YKN, 6YKO, 6YKQ, 6YKS, 6YKT, 6YKU, 6YKV, 6YKW, 6YKX, 7A0P - PubMed Abstract: 
Leucyl-tRNA synthetase (LeuRS) is a clinically validated target for the development of antimicrobials. This enzyme catalyzes the formation of charged tRNA Leu molecules, an essential substrate for protein translation. In the first step of catalysis LeuRS activates leucine using ATP, forming a leucyl-adenylate intermediate. Bi-substrate inhibitors that mimic this chemically labile phosphoanhydride-linked nucleoside have proven to be potent inhibitors of different members of the aminoacyl-tRNA synthetase family but, to date, they have demonstrated poor antibacterial activity. We synthesized a small series of 1,5-anhydrohexitol-based analogues coupled to a variety of triazoles and performed detailed structure-activity relationship studies with bacterial LeuRS. In an in vitro assay, K i app values in the nanomolar range were demonstrated. Inhibitory activity differences between the compounds revealed that the polarity and size of the triazole substituents affect binding. X-ray crystallographic studies of N. gonorrhoeae LeuRS in complex with all the inhibitors highlighted the crucial interactions defining their relative enzyme inhibitory activities. We further examined their in vitro antimicrobial properties by screening against several bacterial and yeast strains. While only weak antibacterial activity against M. tuberculosis was detected, the extensive structural data which were obtained could make these LeuRS inhibitors a suitable starting point towards further antibiotic development.
Organizational Affiliation: 
Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 - Box 1030, 3000, Leuven, Belgium.