Domain Annotation: SCOP/SCOPe Classification SCOP-e Database Homepage

ChainsDomain InfoClassFoldSuperfamilyFamilyDomainSpeciesProvenance Source (Version)
Ad1rypa_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Od1rypo_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Jd1rypj_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Xd1rypx_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Kd1rypk_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Yd1rypy_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Ld1rypl_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Zd1rypz_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
AA [auth 1]d1ryp1_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Md1rypm_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
BA [auth 2]d1ryp2_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Nd1rypn_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Bd1rypb_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Pd1rypp_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Cd1rypc_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Qd1rypq_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Dd1rypd_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Rd1rypr_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Ed1rype_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Sd1ryps_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Fd1rypf_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Td1rypt_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Ud1rypu_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Gd1rypg_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Hd1ryph_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Vd1rypv_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Id1rypi_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)
Wd1rypw_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae ) [TaxId: 4932 ], SCOPe (2.08)

Domain Annotation: SCOP2 Classification SCOP2 Database Homepage

ChainsTypeFamily Name Domain Identifier Family IdentifierProvenance Source (Version)
ASCOP2 FamilyProteasome subunits 8024463 4002254 SCOP2 (2022-06-29)
ASCOP2 SuperfamilyClass II glutamine amidotransferases 8036842 3000131 SCOP2 (2022-06-29)
OSCOP2B SuperfamilyClass II glutamine amidotransferases 8036842 3000131 SCOP2B (2022-06-29)
LSCOP2B SuperfamilyClass II glutamine amidotransferases 8079504 3000131 SCOP2B (2022-06-29)
ZSCOP2B SuperfamilyClass II glutamine amidotransferases 8079504 3000131 SCOP2B (2022-06-29)
BSCOP2B SuperfamilyClass II glutamine amidotransferases 8064048 3000131 SCOP2B (2022-06-29)
PSCOP2B SuperfamilyClass II glutamine amidotransferases 8064048 3000131 SCOP2B (2022-06-29)
CSCOP2B SuperfamilyClass II glutamine amidotransferases 8064020 3000131 SCOP2B (2022-06-29)
QSCOP2B SuperfamilyClass II glutamine amidotransferases 8064020 3000131 SCOP2B (2022-06-29)
DSCOP2B SuperfamilyClass II glutamine amidotransferases 8064012 3000131 SCOP2B (2022-06-29)
RSCOP2B SuperfamilyClass II glutamine amidotransferases 8064012 3000131 SCOP2B (2022-06-29)
ESCOP2B SuperfamilyClass II glutamine amidotransferases 8064026 3000131 SCOP2B (2022-06-29)
SSCOP2B SuperfamilyClass II glutamine amidotransferases 8064026 3000131 SCOP2B (2022-06-29)
FSCOP2B SuperfamilyClass II glutamine amidotransferases 8064066 3000131 SCOP2B (2022-06-29)
TSCOP2B SuperfamilyClass II glutamine amidotransferases 8064066 3000131 SCOP2B (2022-06-29)
USCOP2B SuperfamilyClass II glutamine amidotransferases 8079169 3000131 SCOP2B (2022-06-29)
GSCOP2B SuperfamilyClass II glutamine amidotransferases 8079169 3000131 SCOP2B (2022-06-29)
HSCOP2 FamilyProteasome subunits 8024408 4002254 SCOP2 (2022-06-29)
HSCOP2 SuperfamilyClass II glutamine amidotransferases 8036787 3000131 SCOP2 (2022-06-29)
VSCOP2B SuperfamilyClass II glutamine amidotransferases 8036787 3000131 SCOP2B (2022-06-29)

Domain Annotation: ECOD Classification ECOD Database Homepage

ChainsFamily NameDomain Identifier ArchitecturePossible HomologyHomologyTopologyFamilyProvenance Source (Version)
AProteasomee1rypA1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
OProteasomee1rypO1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
JProteasomee1rypJ1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
XProteasomee1rypX1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
KProteasomee1rypK1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
YProteasomee1rypY1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
LProteasomee1rypL1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
ZProteasomee1rypZ1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
AA [auth 1]Proteasomee1ryp11 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
MProteasomee1rypM1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
BA [auth 2]Proteasomee1ryp21 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
NProteasomee1rypN1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
BProteasomee1rypB1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
PProteasomee1rypP1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
CProteasomee1rypC1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
QProteasomee1rypQ1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
DProteasomee1rypD1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
RProteasomee1rypR1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
EProteasomee1rypE1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
SProteasomee1rypS1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
FProteasomee1rypF1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
TProteasomee1rypT1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
UProteasomee1rypU1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
GProteasomee1rypG1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
HProteasomee1rypH1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
VProteasomee1rypV1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
IProteasomee1rypI1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
WProteasomee1rypW1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)

Domain Annotation: CATH CATH Database Homepage

ChainDomainClassArchitectureTopologyHomologyProvenance Source (Version)
A3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
O3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
J3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
X3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
K3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
Y3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
L3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
Z3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
AA [auth 1]3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
M3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
BA [auth 2]3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
N3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
B3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
P3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
C3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
Q3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
D3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
R3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
E3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
S3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
F3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
T3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
U3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
G3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
H3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
V3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
I3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
W3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)

Protein Family Annotation Pfam Database Homepage

ChainsAccessionNameDescriptionCommentsSource
A, O
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
A, O
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
J, X
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
K, Y
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
L, Z
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
AA [auth 1],
M
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
BA [auth 2],
N
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
B, P
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
B, P
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
C, Q
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
C, Q
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
D, R
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
D, R
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
E, S
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
E, S
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
F, T
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
F, T
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
G, U
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
G, U
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
H, V
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
I, W
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
I, W
PF12465Proteasome beta subunits C terminal (Pr_beta_C)Proteasome beta subunits C terminal- Family

Gene Ontology: Gene Product Annotation Gene Ontology Database Homepage

ChainsPolymerMolecular FunctionBiological ProcessCellular Component
A, O
20S PROTEASOME-
J, X
20S PROTEASOME
K, Y
20S PROTEASOME
L, Z
20S PROTEASOME
AA [auth 1],
M
20S PROTEASOME-
BA [auth 2],
N
20S PROTEASOME-
B, P
20S PROTEASOME-
C, Q
20S PROTEASOME-
D, R
20S PROTEASOME-
E, S
20S PROTEASOME-
F, T
20S PROTEASOME-
G, U
20S PROTEASOME
H, V
20S PROTEASOME
I, W
20S PROTEASOME

InterPro: Protein Family Classification InterPro Database Homepage

ChainsAccessionNameType
A, O
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
A, O
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
A, O
IPR050115Proteasome subunit alphaFamily
A, O
IPR023332Proteasome alpha-type subunitFamily
A, O
IPR001353Proteasome, subunit alpha/betaFamily
A, O
IPR034642Proteasome subunit alpha6Family
J, X
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
J, X
IPR023333Proteasome B-type subunitFamily
J, X
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
J, X
IPR001353Proteasome, subunit alpha/betaFamily
J, X
IPR033811Proteasome beta 3 subunitFamily
K, Y
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
K, Y
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
K, Y
IPR023333Proteasome B-type subunitFamily
K, Y
IPR050115Proteasome subunit alphaFamily
K, Y
IPR001353Proteasome, subunit alpha/betaFamily
K, Y
IPR035206Proteasome subunit beta 2Family
L, Z
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
L, Z
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
L, Z
IPR023333Proteasome B-type subunitFamily
L, Z
IPR001353Proteasome, subunit alpha/betaFamily
L, Z
IPR000243Peptidase T1A, proteasome beta-subunitFamily
AA [auth 1],
M
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
AA [auth 1],
M
IPR023333Proteasome B-type subunitFamily
AA [auth 1],
M
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
AA [auth 1],
M
IPR001353Proteasome, subunit alpha/betaFamily
BA [auth 2],
N
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
BA [auth 2],
N
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
BA [auth 2],
N
IPR023333Proteasome B-type subunitFamily
BA [auth 2],
N
IPR016295Proteasome subunit beta 4Family
BA [auth 2],
N
IPR001353Proteasome, subunit alpha/betaFamily
B, P
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
B, P
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
B, P
IPR050115Proteasome subunit alphaFamily
B, P
IPR023332Proteasome alpha-type subunitFamily
B, P
IPR001353Proteasome, subunit alpha/betaFamily
C, Q
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
C, Q
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
C, Q
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
C, Q
IPR050115Proteasome subunit alphaFamily
C, Q
IPR023332Proteasome alpha-type subunitFamily
C, Q
IPR001353Proteasome, subunit alpha/betaFamily
D, R
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
D, R
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
D, R
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
D, R
IPR050115Proteasome subunit alphaFamily
D, R
IPR023332Proteasome alpha-type subunitFamily
D, R
IPR001353Proteasome, subunit alpha/betaFamily
E, S
IPR033812Proteasome subunit alpha5Family
E, S
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
E, S
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
E, S
IPR050115Proteasome subunit alphaFamily
E, S
IPR023332Proteasome alpha-type subunitFamily
E, S
IPR001353Proteasome, subunit alpha/betaFamily
F, T
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
F, T
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
F, T
IPR050115Proteasome subunit alphaFamily
F, T
IPR023332Proteasome alpha-type subunitFamily
F, T
IPR001353Proteasome, subunit alpha/betaFamily
G, U
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
G, U
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
G, U
IPR050115Proteasome subunit alphaFamily
G, U
IPR023332Proteasome alpha-type subunitFamily
G, U
IPR001353Proteasome, subunit alpha/betaFamily
H, V
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
H, V
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
H, V
IPR023333Proteasome B-type subunitFamily
H, V
IPR001353Proteasome, subunit alpha/betaFamily
H, V
IPR000243Peptidase T1A, proteasome beta-subunitFamily
I, W
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
I, W
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
I, W
IPR024689Proteasome beta subunit, C-terminalDomain
I, W
IPR023333Proteasome B-type subunitFamily
I, W
IPR001353Proteasome, subunit alpha/betaFamily
I, W
IPR000243Peptidase T1A, proteasome beta-subunitFamily

Structure Motif Annotation: Mechanism and Catalytic Site Atlas M-CSA Database Homepage

ChainsEnzyme NameDescriptionCatalytic Residues
proteasome endopeptidase complex  M-CSA #177

The 26S proteasome is the central enzyme of non-lysosomal protein degradation. It is involved in the removal of misfolded or incorrectly assembled proteins, and also in the degradation of short lived regulatory proteins including transcription factors and the cyclins of cell-cycle control. The catalytic core of the complex is formed by the 20S proteasome, which has the form of a barrel-shaped particle composed of four stacked seven-membered rings. In yeast and higher eukaryotes, the rings are made up of 14 different but related subunits, the overall complex containing two subunits of each type. These can be classified into two families, alpha-type and beta-type. The beta type subunits form the inner two rings of the complex and at least three of them (beta-1, beta-2 and beta-5) are catalytically active. The cleavage specificities of these sites are determined largely by their S1 pockets and the three major specificities of the proteasome - peptidylglutamil-hydrolysing, trypsin-like, and chymotrypsin-like - have been assigned respectively to beta-1, beta-2 and beta-5.
The proteasome from archaea such as Thermoplasma acidophilum is simpler, consisting of 14 copies each of only two different subunits, alpha and beta. The archaeal enzyme has only a single, chymotrypsin-like activity although it has been shown to hydrolyse almost any peptide bond in denatured substrates.

In all cases the beta subunits are synthesised as inactive precursors which undergo autocatalytic cleavage to expose the catalytically active N-terminal residue.

Defined by 8 residues: THR:I-1ASP:I-17ARG:I-19LYS:I-33GLY:I-47SER:I-129ASP:I-166SER:I-169
 | 
 
Explore in 3DM-CSA Motif Definition